Lecture Notes: 4-4 Indeterminate Forms and
L'Hospital's RULE
(PART 1)
MOTIVATING ExAMPLES: Evaluate the Chapter 2 limits below, justifying each step:
a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x-3)(x-2)}$ algebra
b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
b/c we can prove this using
a clever geometric argument.

L'Hospital's Rule If a limit has the form \qquad $\frac{0}{0}$ or $\pm \infty / \pm \infty$ then
provided the limit on the right actually exists.

QUESTION 1: Determine whether or not l'Hospital's Rule applies to the MOTIVATING EXAMPLES (copied below) and if it does, apply it. Do you get the same answer?
a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}<$ has the form $\frac{0}{0}$.

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\lim _{x \rightarrow 2} \frac{2 x}{2 x-5}=\frac{4}{-1}=-4
$$

same answer as before
b) $\lim _{x \rightarrow 0} \frac{\sin x}{x} \leftarrow$ has the form $\frac{0}{0}$

$$
\lim _{x \rightarrow 0} \frac{\cos x}{1}=\frac{1}{1}=1
$$

QUestion 2: Why does l'Hospital's Rule work?
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ has form $\frac{0}{0}$, then $f(a)=0$ and $g(a)=0$.
So $\frac{f(x)}{g(x)}=\frac{f(x)-0}{g(x)-0}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}}$. Now, look at the limits

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{x+2}{x-3} \quad \text { for } x \neq 2 \text {, these } \\
& =\frac{4}{-1}=-4 \text { plug in }
\end{aligned}
$$

Practice Problems: Evaluate the following limits.

1. $\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (3 x)}$ form $\frac{0}{0}$

$$
=\lim _{x \rightarrow 0} \frac{5 \sec ^{2}(5 x)}{3 \cos (3 x)}
$$

$$
=\frac{5}{3}
$$

3. $\lim _{x \rightarrow 0} \frac{\cos (4 x)}{e^{2 x}}=\frac{\cos (0)}{e^{0}}=\frac{1}{1}=1$

L'Hospital's Rule doesn't apply.
Lesson: Always check that L'Hospital's Rule applies before using it.
4. $\lim _{x \rightarrow 0} \frac{x e^{x}}{2^{x}-1} \quad$ form $\frac{0}{0}$

$$
\stackrel{H}{=} \lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}}{(\ln 2) 2^{x}}=\frac{1}{\ln 2}
$$

Lesson: Sometimes you have to apply l'tospital's Rule more than once.
5. $\lim _{x \rightarrow 1^{+}}\left(\ln \left(x^{4}-1\right)-\ln \left(x^{9}-1\right)\right)$ form $\infty-\infty$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1^{+}} \ln \left(\frac{x^{4}-1}{x^{9}-1}\right) \quad \text { algebra } \\
& =\ln [\underbrace{\lim _{x \rightarrow}\left(\frac{x^{4}-1}{x^{9}-1}\right)}_{x \rightarrow 1^{+}}] \quad \begin{array}{l}
\text { optimism + rules } \\
\text { about limits }
\end{array} \\
& =\ln \left[\lim _{x \rightarrow 1^{+}} \frac{4 x^{3}}{9 x^{8}}\right] \\
& =\ln \left[\frac{4}{9}\right]
\end{aligned}
$$6. $\lim _{x \rightarrow \infty} \sqrt{x} e^{-x / 2} \leftarrow$ form $\infty .0$ (but we easily turn the " 0 " term into an " ∞ " termu/algebra.)

$=\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x / 2}} \leftarrow$ Now ithas the form $\frac{\infty}{\infty}$.

$$
\begin{aligned}
& \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{2} x^{-1 / 2}}{\frac{1}{2} e^{x / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x} e^{x / 2}}=0 \quad \text { b/c } \sqrt{x} e^{x / 2} \rightarrow \infty \text { as } x \rightarrow \infty
\end{aligned}
$$

* Articulate explicitly what trick was used to evaluate the last limit and state precisely what sort of limits this trick will apply to in general.
If a limit has the form $0 \cdot \infty$, one of the terms in the product can be written in the denominator so that the expression has the form $\frac{0}{0}$ or $\frac{\infty}{\infty} \longleftrightarrow$ rewrite "o" term

